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Before deep learning (before 2012)
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Before deep learning (before 2012)
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Before deep learning (before 2012)
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Deep learning (after 2012)
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Deep learning (after 2012)
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Deep learning (after 2012)
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Deep learning (after 2012)
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My experiences

" Started my PhD in October
2017 on the SMARAGD
project

" Volunteer potato detection
in sugar beets

" Deep-learning was
commonly applied on
agricultural datasets, but
not in practice
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Problem description

® After harvest of the potatoes, potatoes are left behind on the field. :

" Next year, when growing another crop, the volunteer potatoes

come up and compete with the crop and maintain soil borne
diseases.

" Full field spraying cannot be applied as this will damage the crop.
Therefore the potatoes are manually removed
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Solution: Automated volunteer potato removal

Detection algorithm

Image processing server
-
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Results

® Tested in 8 fields

" Variation in
performance between
fields.

" On average 96% of
the potatoes were
terminated while
damaging only 3% of
the crops.
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Lack of generalization

" Plants look different than the same plant in other growth stages, in another field,
different illumination

® Detection algorithms have difficulty to detect these plants in all circumstance




Research questions

" How to improve the training data for a plant detection model?
e More training fields?
e More training images?
e Incremental training on the new field?

® 20 training fields and 5 test fields
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Results
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Results

By finetuning on a small 1.0
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Now. Commercial robots enter the market

Steketee IC-Weeder Al
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The future

" Current challenges are solvable
" Robustness of hardware - matter of time

" Robust software - Acquire more diverse
data

® Developments in fundamental
science

e Active learning
e Domain adaptation

" Technically weeding robots are now
available and reliable in a few years
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The future perspective

Quality, reliability, cheap

Conventional
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Questions/discussion
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