Autonomous Greenhouse Challenge

Anna Petropoulou, WUR Greenhouse Horticulture

NVTL Annual Conference

24/05/2022

Artificial Intelligence

- The theory and development of computer systems able to perform tasks normally requiring human intelligence (visual perception, speech recognition, decisionmaking).
- Intelligence demonstrated by machines, unlike natural intelligence displayed by humans and animals which involve consciousness and emotionality.
- Traditional problems (or goals) of AI research include reasoning, knowledge representation, planning, learning, natural language processing, perception and the ability to move and manipulate objects.

Today's high-tech greenhouses

- Increased food demand
- Larger greenhouse compartments
- Greenhouse crop production a green industrial production process
- Internationally lack of skilled labour
- Grower needs to decide on many aspects
 - Yield
 - Product quality
 - Resource use, sustainability
 - Market

+35% -51% over 2010-2050

- Per capita consumption (kcal per capita per day)
- Total food consumption (in 1×10^{15} kcal) https://www.nature.com/articles/s43016-021-00322-9

Today's high-tech greenhouses

- Increased food demand
- Larger greenhouse compartments
- Greenhouse crop production a green industrial production process
- Internationally lack of skilled labour
- Grower needs to decide on many aspects
 - Yield
 - Product quality
 - Resource use, sustainability
 - Market

Greenhouse vegetable production

Road Map of Autonomous Greenhouses

2006

Toward an optimal control strategy for sweet pepper cultivation (Buwalda et al., 2006; DOI: 10.17660/ActaHortic.2006.718.42)- Sweet pepper

2012

2019

2020

- Multiobjective hierarchical control architecture for greenhouse crop growth (Ramirez-Arias et al., 2010; DOI: 10.1016/j.automatica.2012.01.002) - Tomato
- Remote Control of Greenhouse Vegetable Production with Artificial Intelligence—Greenhouse Climate, Irrigation, and Crop Production (Hemming et al., 2019; DOI: /10.3390/s19081807) - Cucumbers
- **Cherry Tomato Production in Intelligent Greenhouses—Sensors and AI for** Control of Climate, Irrigation, Crop Yield, and Quality (Hemming et al., 2020; DOI: 10.3390/s20226430) - Cherry Tomatoes

3rd International Autonomous Greenhouse **Challenge-** *Lettuce*

Today

Tencent 腾讯

"Explore the potential of Artificial Intelligence for the remote and autonomous monitoring and control of greenhouse climate and crop using sensor data"

Autonomous Greenhouse Challenge

Physical models: Kapsro-Intkam

- Translating outside weather conditions and control actions into greenhouse climate
- Calculates the impact of control actions on energy (electricity and heat) and CO₂ use
- Accounts for limitations that follow from choices made in capacities and equipment.
- Calculates the costs and gains associated within a cultivation cycle

Autonomous Greenhouse Challenge

- ✓ Five compartments
- ✓ Equal size
- ✓ Equal base equipment
 - Heating
 - Fogging
 - CO₂ dosing
 - Movable screens
 - Illumination
- ✓ Commercial sensing equipment
- ✓ Interface: data and control
- ✓ Internet connection
- ✓ Reference

Remote Control of Greenhouses

Remote Control of cucumber cultivation

net-radiation

sap-flow

Remote Control of cucumber cultivation

- ✓ 5 International teams
 - Sonoma
 - Croperators
 - AICU
 - Igrow
 - DeepGreens

Final results

Challenge set-up

Cost components

Production and Quality

50% of total points

Ranking in sustainability & AI

Heat (MJ)	Electricity (kWh)	CO ² (kg)	Water (I)	Nutrients (g)
12,9	18,7	0,63	25,0	83,0
18,5	17,6	0,74	25,2	81,0
25,3	19,9	0,87	25,9	78,0
25,9	17,7	0,56	26,9	90,0
12,8	24,0	0,72	27,9	100,0
33,0	19,0	0,60	27,4	99,0

*Per kg class A tomato

20% of total points

points

AI approach

Automatoes

AICU

The Automators

IUACAAS

Earlier editions

https://doi.org/10.3390/s19081807 https://doi.org/10.3390/s20226430

- https://doi.org/10.4121/uuid:e4987a7b-04dd-4c89-9b18-883aad30ba9a
- https://doi.org/10.4121/uuid:88d22c60-21b3-4ea8-90db-20249a5be2a7
- https://doi.org/10.4121/15023088.v1.

3rd Autonomous Greenhouse CHallenge

- Hackathon
- Real Challenge

Autonomy

Communication protocol

Real experiments

- 1st February- 15th March
- 3rd May- Ongoing

Cultivation strategy and spacing to obtain ...

... the optimum number of lettuce heads...

...of the right quality ...

... making optimal use of resources...

... to obtain maximum net profit!

3rd Autonomous Greenhouse Challenge

Final Event 3rd Autonomous Greenhouse Challenge

1st July

1st International Autonomous Greenhouse Event

Organized by
Wageningen University & Research
Greenhouse Horticulture

sponsored by Tencent and David Wallerstein, CXO Tencent

Tencent **腾**讯

https://www.wur.nl/en/Research-Results/Research-Institutes/plant-research/ greenhouse-horticulture/show-greenhouse/ International-Autonomous-Greenhouse-Event.htm

Levels of Autonomy

Autonomous Greenhouses

- Autonomous decision support systems (climate, irrigation, crop management)
- Intelligent sensing of cultivation parameters (climate, crop, irrigation, fertigation, pest, diseases)
- Automated handling of activities with robotics (harvesting, spraying)

Digitalizing Green Fingers

Autonomous growing & levels of autonomy Key role: Volume & Variety in data

- ☐ High-Tech Research facilities
- Non-invasive automated sensing
- ☐ FAIR data principles

Integrated approach

Conclusions

- AI algorithms can compete & outperform human reference
- Training data is lacking in quality and quantity
- Computer vision towards understanding and measuring plant performance
- Crop registrations need to be digitalized (non invasively, automated)
- Pest and diseases, nutrients
- Digital twins
- Robotics

3rd Autonomous Greenhouse Challenge

More information:

www.autonomousgreenhouses.com

Contact:

anna.petropoulou@wur.nl

autonomousgreenhouses@wur.nl

