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Protein folding problem
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What a protein does largely depends on its 
unique 3D structure. 

Figuring out what shapes proteins fold into is  
the protein folding problem, and has stood as 
a grand challenge in biology for the past 50 
years

AlphaFold2: High Accuracy Protein Structure Prediction Using Deep Learning
https://deepmind.com/blog/article/alphafold-a-solution-to-a-50-year-old-grand-challenge-in-biology
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• Expertise Leader | Computer Vision and Robotics
• Focus: Post-harvest Technology and AgroFood Robotics

• Education
• B. Eng. Computer Science and Engineering (BAMU, India | 2001)

• MSc. Autonomous Systems (Exeter University, UK, 2004)

• PhD Informatics and Robotics (University of Aveiro, Portugal 2014)

• Experience
• 2 decades of experience in Computer Vision, Machine Learning and Robotics

• Robotic systems: Robotics arms, Humanoid robots, Drones

• Applications: Service robotics, Industrial inspection, Agri-food

Aneesh Chauhan
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▪ Factors causing the change 

● Product biology 

● Input variables

● Climate variables

● Diversity of varieties

To model change
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Towards closed-loop cultivation



What shall we model?

A. Crop current state modelling to retrieve
- Relevant crop traits [depends per crop]
- Relevant stresses

B. Crop current state modelling based on prior state
knowledge
- Relevant crop traits
- Relevant stresses

C. Future state modelling based on prior state 
knowledge
- Relevant crop traits
- Relevant stresses

https://www.agricentre.basf.co.uk/Pictures/agricentre_pictures/pgr_2_pictures/pgr_growth_stage_pictures/pgr_growth_stage_one_850x478.jpg
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Machine learning in AI ecosystem
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Supervised learning

Healthy? /

Damaged?

Degree of 
damage?

A classification problem

Regression problem

• Dataset is available such that we 
know what the expected output 
should be

• There is relation between the 
data and expected output

• Feedback from incorrect 
prediction can be used to 
improve learning

• Two types:
• Classification – Discrete 

decision

• Regression – Continuous value 
output



Finding patterns in raw data is hard!
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What machine “sees”What we see



Phalaenopsis root quality assessment
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▪ The goal of the project is to build objective quality assessment 

tool for the roots (Phalaenopsis plant).

▪ Quality is defined by the number of good and bad root tips

Floricultura and Anthura



Root quality assessment
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▪ Data collection: ~3k images collected

▪ Data annotation: Good & Bad root tip ~350 

images annotated 

▪ Problem definition: Detect the root tips and 

classify them as Good or Bad

▪ Choice of deep network: Mask-RCNN

Network 
Output

Sample annotation



Root quality assessment
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Detection Ground truth Detection Ground truth



Plant phenotyping
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▪ How many plants 

do you see?

▪ How many leaves 

do you see?

▪ Where exactly is 

each leaf?



Temporal analysis
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Detecting new leaves under occlusion
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Floricultura and Anthura



Where is the new leaf?
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▪ Accounts for history of 4 

weeks

Network architecture (Prediction a week later)
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Example 2: Successful predictions

20



Example 3: Successful prediction
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Example 4: Correct prediction
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Where is the new leaf?
- Hard to intuitively understand the model result
- Likely the model captured some temporal trend
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Example 1 cont.
Correct prediction one week later
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Example 2: Correct prediction one week earlier



Example 5: Failed prediction
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• Plant is occluded from neighbouring plant leaves 
for 4 weeks



Explainable AI

26



What shall we model?

A. Crop current state modelling to retrieve
- Relevant crop traits [depends per crop]
- Relevant stresses

B. Crop current state modelling based on prior state
knowledge
- Relevant crop traits
- Relevant stresses

C. Future state modelling based on prior state 
knowledge
- Relevant crop traits
- Relevant stresses

https://www.agricentre.basf.co.uk/Pictures/agricentre_pictures/pgr_2_pictures/pgr_growth_stage_pictures/pgr_growth_stage_one_850x478.jpg

https://www.agricentre.basf.co.uk/Pictures/agricentre_pictures/pgr_2_pictures/pgr_growth_stage_pictures/pgr_growth_stage_one_850x478.jpg


Explainable AI: Predicting sensitivity of tomato 

sepals to future fungal infections

28https://www.nature.com/articles/s41598-021-02302-2

Prominent growers/DOOR partners



▪ Be aware of the bias in our data

● Making decisions based on biased data (data is not representative of 
the problem)

▪ Interpretation of models

● Life used to be simple and explainable with models with less 
parameters

▪ Responsibility: Who is to blame when things go wrong?

▪ Combining existing “knowledge-driven” models with data-driven models

Major challenges of the day
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▪ This session was to encourage you to see the potential of advances 

in computer vision and machine learning

▪ We looked at some examples of deep learning in protected 

cultivation

▪ These technologies are disrupting WUR domains, and solving real 

world business and social problems

▪ Let’s not throw the caution out of the way – Be aware of pitfalls of 

the technology

Summary
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Closed-loop protected cultivation
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AgroFood Robotics team 

www.wur.nl/agrofoodrobotics

And multiple WUR and external 

partners

PPS Exploitation of high-tech plant 

phenotyping tools for breeding 

companies and growers.

Partners: Floricultura and Anthura

Acknowledgements
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How would you use these 

technologies and solve 

your challenges?
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