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Deep Learning experience WUR

Agro Food Robotics
Wageningen University & Research, The Netherlands

Jochen Hemming 

NVTL study day ‐March 6, 2018

Intro

 Jochen Hemming, PhD in Horticultural Science,
Senior Researcher Computer Vision & Robotics in
Horticulture.

 Since 2000: at Wageningen University & Research
 Expertise

● Computer Vision (hard- and software)
● Robotics
● Mechatronics & Automation in plant production
● ICT (Programming, Databases)

 Projects
● Harvesting robots
● Bush trimming robots

● Pest and disease detection
● Vision based weed control
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Difference Deep Learning and Machine Learning

 With machine learning, manual extraction of the relevant features of 
an image is needed.  

 With deep learning, the raw images are fed directly into a deep 
neural network that learns the features automatically. 

Challenge: Many Deep Learning flavours

 Different frameworks.

 Different network architectures.

 Different platforms/tools

● Web-based (e.g. AWS)

● Linux 

● Windows

 The field moves fast and keeping up is tricky.
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Projects @ WUR that are using/have used
deep-learning

www.agrofoodrobotics.nl

 EU Horizon 2020 ICT use case project
 6 partners from 4 countries

(The Netherlands, Belgium, Sweden 
and Israel).
 The project focusses on technology 

transfer rather than R&D

Sweet-pepper robot
Greenhouse experiments
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Modules
 End-effector (grasp, cut)

 + Camera (location, distance and 
ripeness detection)

 + Illumination (better detection 
under alternating conditions)

 Deep-learning (to avoid obstacles)

 Robot arm (to search, move to fruit, 
and convey fruit)

 Platform (to move robot in the 
greenhouse)

 Logistics (to convey picked fruits)

Patented end‐effector
concept

Deep-Learning for plant part 
localization in images
 DeepLab V2 on top of Caffe for semantic 

segmentation (per-pixel, no instance 
detection).

 Synthetic dataset is used to bootstrap the 
model.

 Trained network deployed for real-time 
obstacle detection and to determine best 
end-effector alignment.

Contact: Ruud Barth
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Results on empirical images 

Empirical images               Ground truth                 Segmentation

Contact: Ruud Barth

Optimising Realism of Synthetic Images using 
Cycle Generative Adversarial Networks, Cycle-GAN

 Current bottleneck is the requirement of large annotated datasets.

 Dissimilarity gap remains caused by sub-optimal manual modelling.

 Optimising the realism of synthetic images by unpaired image-to-
image translation from the synthetic to empirical domain.

Barth, R. ; IJsselmuiden, J.M.M. ; Hemming, J. ; 
Henten, E.J. van (2017): Optimising Realism of 
Synthetic Agricultural Images using Cycle
Generative Adversarial Networks. In: 
Proceedings of the IEEE IROS workshop on 
Agricultural Robotics 2017.
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Hardware used for the training

GPU acceleration is needed to train Deep Learning networks.
4x NVIDIA Titan X 12GB, 128 GB Ram, I7 CPU and a lot of cooling.

 Prototyping next generation, intelligent gardening robots.

 Focused on the development of intelligent hedge, rose
and bush trimming capabilities.

 Robot navigates over varying garden terrain, to approach
bushes, and restore them to their ideal tidy shape.

 Targeting the consumer market, as well as gardening professionals 

12

TrimBot2020:  A Robot for Hedge, Rose
and Topiary Trimming
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 University of Freiburg 

● FlowNet for Optical Flow 
Estimation 

 University of Amsterdam 

● CNN-based Intrinsic Image 
Decomposition to decompose 
images in reflectance 
(albedo) and shading. 

● Faster-RCNN and SegNet for 
Semantic Garden 
Segmentation.

DeepLearning in Trimbot2020

13

Worm Damage Detection in Apples

 RGB images of apples under uncontrolled conditions in orchard 
(CASC IFW Apple Dataset from Purdue Univ.)

 Detection of holes left by worms infesting apples.

 Input images from dataset:

14
Contact: Hennie de Villiers
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Apples: Disambiguation using context

15

Camera Image True Location of Worm Holes Prediction after Training

Context helps distinguish worm damage 
from the bottom of the apple.

Apples: Input / Output Pair Examples

Contact:
Hennie de Villiers
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Automated segmentation of grape stem
 RGB images of blue / red and white grapes

 Task is to detect the stalks for subsequent pickup by robot

 Input images from dataset:

17Contact: Hennie de Villiers

Deep Learning for segmentation of grape stem

 Fully Convolutional Neural Networks on Theano/Lasagne
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Grapes: Sample Results (Blue Grapes)

19
Contact: Hennie de Villiers

Grapes: Sample Results (Red Grapes)

20
Contact: Hennie de Villiers
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Grapes: Sample Results (Green Grapes)

21
Contact: Hennie de Villiers

Apple Bruise Detection

 Hyperspectral images of apples (dataset captured by KU Leuven)

 Detection of bruises due to handling

 Fully Convolutional Neural Networks on Theano/Lasagne

 Examples from dataset:

22
Contact: Hennie de Villiers
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Apples: Training Visualization

23
Contact: Hennie de Villiers

EU SmartBot project: weed classification

 Conventional approach (for weed detection):

● Color based detection.

● Use of cover for controlled environment & artificial lighting

 Problems: color-based approach not work, requires extra structure

Contact: Hyun Suh
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EU SmartBot project: weed classification

Seasonal 
effects
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Contact: Hyun Suh

EU SmartBot project: weed classification
 Deep learning (CNN) for weed/crop classification (2015)

● Transfer learning based on pre-trained deep network 
(AlexNet)
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Newly added layers

Suh, H.K., J.W. Hofstee, J. IJsselmuiden, & E.J. van Henten
(Under review). Transfer learning using AlexNet for the 
classification of sugar beet and volunteer potato under field 
conditions (Manuscript submitted for publication in 
Biosystems Engineering in 2016).
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EU SmartBot project: weed detection
 Weed detection: Faster R-CNN

● VP  Voluteer potaton (weed)

● SB  Sugar beet (cash crop)

Contact: Hyun Suh

Detecion of bacteria infection in seed potatoes

 Detection of virus infection and Erwinia
(bacterium) in seed potato plants.

 Hyperspectral scans of the plants are analysed.

 Deep Learning with PyTorch (Python based 
scientific computing package). 

Contact: Hennie de Villiers/Gerrit Polder/Jan Kamp
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PeMaTo-EuroPep (2017–2019)
F-RCNN (bounding boxes) for 
automatic counting of white fly 
and beneficial insects trapped 
on yellow sticky traps.

Photo reference: 
CC BY‐SA 3.0, https://commons.wikimedia.org
/w/index.php?curid=39889

Contact: Hyun Suh/Jochen Hemming

Projects @ WUR that plan to use using deep-l.
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Selective broccoli harvesting robot

 Selective harvesting of broccoli based on 
minimum diameter of head.

 Deep-learning for better and more robust 
image classification

Contact: Pieter Blok

Deep Learning in animal welfare

 Detect animal welfare (e.g. maladies) in video images of pigs/cows.

 Observation of the body language.

 Video representation learning.

 Pseudo-3D Residual Networks (P3D) [Yao & Mei, ICCV’17]

 PyTorch Deep Learning (Python based scientific computing package)
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3D Tomato plant phenotyping 

 Tomato plants scanned whit a 6 DoF robot equipped with two 
Phenospex cameras for full 3D phenotyping. 

 PointNet: Deep Learning on Point Sets for 3D Classification and 
Segmentation 

Contact: Rick van de Zedde

Deep learning for weed detection

 SAGA swarm robotics for 
weed control.

 SMARAGD: smart 
mechanisation, automation, 
robotics for arable farming.

 Weed detection on lawn or 
in grasslands.

 YOLO (You Only Look Once) 
or Faster RCNN.

Contact: Gert Kootstra/Frits van Evert/Jan Kamp
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Disadvantages Deep Learning

 Training process is based on analysing large amounts 
of data, labour intensive labelling is needed.

 Expert knowledge is needed to select architecture, to 
get the (open source) framework installed. 

 Expert knowledge is needed to bootstrap and fine 
tune network. 

 Black box: deep-learning is incapable of providing 
arguments why it has reached a certain conclusion.

 Resource-Demanding Technology. High 
computational costs.

Advantages Deep Learning

 No manual feature selection needed.

 Ability to generate new features from limited 
series of features in the training set. 

 Potentially deep learning supports also 
unsupervised learning techniques. 

 Superior classification results.
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Thank you for your 
attention

Contact:

jochen.hemming@wur.nl

www.agrofoodrobotics.nl

37


