Grazing behaviour in dairy cows as a predictor of grass intake

NVTL studiedag Wageningen, 8 Maart 2017

R.L.G. Zom, J.T.N. Van Der Werf, B. Timmer, D. Hoeksma and C.G. Van Reenen

Introduction

- Grazing of dairy cows is appreciated by society
- Netherlands ~ 70% of the dairy cows are grazed
- Grazing tends to decline
- Increasing number cows/farm

• Area of grassland near the farm is a limiting factor

- High stocking densities (6 cows/ha)
- Need for supplementary feeding

Introduction

Objective

Develop a method to estimate individual grass intake

- As a tool for feeding management
- As a tool for grassland management

Provide commercial cow sensor data useful information?

- Rapid development
- Technology becomes cheaper

Grazing experiment

- Dairy Campus Leeuwarden
- Comparison of 3 grazing systems:
 - Strip grazing

VESTOR

- Rotational grazing
- Continuous grazing
- 20 cows per system on 3.3 ha (6 cows / hectare)
 - 6.5 kg DM concentrate/day
 - Variable amounts of maize silage supplementation

Strip grazing

Roma Their

Rotational grazing

Continuous grazing

Strip grazing:

- Flexible fence, with back fence
- Herbage allowance:
 - Depending on grass cover, grass stock
 - Two succesive grazings on the same strip

followed by a cut for silage

Rotational grazing

Continuous grazing

Strip grazing

Supplementation with maize silage, to

manage grass stock

Rotational grazing:

24 fixed paddocks of 0,14 ha

Grass completely consumed in 1 day

Post grazing SSH ~ 4 cm

Cutting for silage making >2200 kg DM/ha

Continuous grazing

Strip grazing

Rotational grazing

Maize silage supplementation:
Grass allowance < 16 kg DM

Continuous grazing:

- 6 Paddocks of 0.55 ha
- Each paddock grazed for 1 day, then to the next
 - Heavy clay soil, prone to poaching
 - Avoid poaching around entrance, water points
 - More even distribution of dung

Rotational grazing

Continuous grazing

Strip grazing

Maize silage supplementation:
To maintain constant grass cover

Measurements

- Milk production (daily)
- Milk composition: protein, fat urea, SCC (weekly)
- Body weight and BCS (monthly)
- Intake Supplemental feeds silage & concentrates (daily)
- Grass height pre and post graze (daily)
- Sensor data cow behaviours (24/7)

Measurements

Sensor data

Standing/lying & no steps

Grazing time

'IceQube'

'Smarttag Neck'

Previous validation study Smarttag Neck (van Reenen et al. 2015)

Grazing (s/2h), behavioural observations (reference)

Measurements

- Individual grass and maize silage DM intake
- N-alkane method
 - Grass intake C32/C33 alkane pairs
 - Daily dosed with C32 labelled concentrate
 - Maize silage intake
 - Maize silage mixed with C36 labelled soybean meal fixed ratio
 - Collection of faeces
 - Samples pooled per cow per week

Data analysis - approach

Multivariate regression analysis -----> models

Dependent variable Cov

Y

Grass DM intake (GDMI)

Covariables / Predictors Cow data Grass height data Sensor data Grazing system

constant + X1 + X2 + X3 + ...

Data analysis - approach

Grazing system:

- Not included as a fixed effect with three levels (only relevant for estimation of effects)
- Translated into a continuous covariable: grazing area/cow (ha)

Dairy cow performance (intake measurement period)

		Grazing syste	em	_	
Treatment	Strip	Rotational	Continuous	Significance	s.e.d.
Grass intake (kg DM)	13.2	14.5	11.8	n.s.	1.17
Maize silage (kg DM)	5.8	0.0	5.6		
Concentrate (kg DM)	6.3	6.1	6.0		
Total DMI (kg)	25.3 ª	20.6 ^b	23.4 ª	P<0.001	0.98

Dairy cow performance (intake measurement period)

-		Grazing system			
Treatment	Strip	Rotational	Continuous	s Significance	s.e.d.
Grass intake (kg DM)	13.2	14.5	11.8	n.s.	1.17
Maize silage (kg DM)	5.8	0.0	5.6		
Concentrate (kg DM)	6.3	6.1	6.0		
Total DMI (kg)	25.3ª	20.6 ^b	23.4ª	P<0.001	0.98
Milk (kg)	29.5	29.5	29.0	n.s.	1.77
FPCM (kg)	29.8	29.8	30.6	n.s.	1.68
Milk protein %	3.23	3.38	3.37	n.s.	0.09
Milk fat %	4.14	4.06	4.44	n.s.	0.19
Protein yield (kg)	0.94	1.01	1.01	n.s.	0.05
Fat yield (kg)	1.28	1.21	1.24	n.s.	0.06
Milk urea mg/100 ml	11.1 ª	18.7 ^b	15.5 ^c	p<0.001	1.12
Live weight (kg)	573	576	574	-	-
Body condition score	2.3	2.3	2.2	-	-

Dairy cow performance (intake measurement period)

-		Grazing system			
Treatment	Strip	Rotational	Continuous	s Significance	s.e.d.
Grass intake (kg DM)	13.2	14.5	11.8	n.s.	1.17
Maize silage (kg DM)	5.8	0.0	5.6		
Concentrate (kg DM)	6.3	6.1	6.0		
Total DMI (kg)	25.3ª	20.6 ^b	23.4ª	P<0.001	0.98
Milk (kg)	29.5	29.5	29.0	n.s.	1.77
FPCM (kg)	29.8	29.8	30.6	n.s.	1.68
Milk protein %	3.23	3.38	3.37	n.s.	0.09
Milk fat %	4.14	4.06	4.44	n.s.	0.19
Protein yield (kg)	0.94	1.01	1.01	n.s.	0.05
Fat yield (kg)	1.28	1.21	1.24	n.s.	0.06
Milk urea mg/100 ml	11.1 ª	18.7 ^b	15.5°	p<0.001	1.12
Live weight (kg)	573	576	574	-	-
Body condition score	2.3	2.3	2.2	-	-

WAGENINGEN UR

Grass composition

Grazing system				
Strip	Rotational	Continuous		
180	205	203		
87	85	83		
177	191	148		
31	35	27		
153	163	191		
222	208	213		
499	468	467		
83.4	84.0	82.3		
	Strip 180 87 177 31 153 222 499 83.4	StripRotational1802058785177191313515316322220849946883.484.0		

Do we need a multivariate approach?

Single predictors:

- Milk production 30% of variation in GDMI explained – correlation = 0.60 (P < 0.001)
- Grazing time 20% of variance of GDMI explained – correlation = 0.50 (P < 0.001)

Yes

The best model overall – Model 1

Parameter	Estimate	SE	P-value
Constant (intercept)	-23.72	3.68	<0.001
Grazing area/cow	-162.6	21.2	<0.001
Milk yield	0.4677	0.0438	<0.001
DIM	0.01433	0.00444	0.002
Milk protein	3.79	1.12	0.001
Milk urea	0.2388	0.0522	<0.001
Time spent grazing	0.003288	0.000741	<0.001

85% of variation in GDMI explained

Model 1:

Correlation between y and X: 0.92 (N=58; *P* < 0.001)

- Milk composition not always (immediately) available
- Alternative model without milk composition as explanatory variable

Model without measures of milk composition – Model 2

Parameter	Estimate	SE	P-value
Constant (intercept)	-13.35	2.54	<0.001
Grazing area/cow	-116.2	25.9	<0.001
Milk yield	0.4287	0.0528	<0.001
DIM	0.03033	0.00419	<0.001
Number of steps	0.001591	0.000382	<0.001
Time spent grazing	0.003032	0.000891	0.001

74% of variation in GDMI explained

Model 2

Correlation between y and X: 0.87 (N=58, *P* < 0.001)

Average GDMI at herd level (N=58)

Average GDMI (kg DM/cow/day)

n-alkane method	13.172
Estimated with model 1	13.171
Estimated with model 2	13.167

Prediction model highly accurate at herd level

Results & discu

Estimated GDMI ac

Experimental week

Estimated GDMI across grazing season

Support tool for grazing management?

Conclusions

- Grass DM intake can be accurately estimated with multivariate regression models
- Different predictor models may be selected based on the availability of predictor data
- Models may represent potential management tools
- Models have to be validated:
 - Different times of year
 - Different pasture conditions
 - Different herds

Follow-up studies are in progress

Any questions ?

LIVESTOCK RESEARCH WAGENINGEN UR

T

Thank you for your attention

Ronald.Zom@wur.nl

Measurements during whole season

Measurement	Frequency	Analysis/ Device
Milk production	Daily	In Milking parlor
Milk composition	4 successive milkings each week	Protein, fat, urea, SSC etc.
Animal weight	2 successive days each month	Weighing
Condition score	At same time as animal weight	Visual observation
Silage intake	Daily for each treatment	Weighing
Concentrate intake	Daily per animal	Feeding during milking
GH	Daily pre and post graze for each treatment	Rising plate meter
Animal behaviour	All the time	By pedometer, neck sensor and ear sensor

Behaviour sensors

Pedometer IceQube, IceRobotics, United Kingdom Smarttag neck sensor NEDAP, Groenlo, the Netherlands Ear sensor SensOor, Agis Automatisering BV, Harmelen, the Netherlands

Experimental week

- Individual HDMI determined with alkane method
- Alkanes are long indigestible carbon chains
- The wax layer of grasses contain odd chain alkanes (C33 and C35)
- By adding even chain alkanes to the supplemental feed, the HDMI can be calculated from the ratio in the faeces

• HDMI (kg DM/ day) =
$$\frac{\frac{F_{33}}{F_{32}}(D_{32}+I_c\cdot C_{32})-I_c\cdot C_{33}}{H_{33}-\frac{F_{33}}{F_{32}}\cdot H_{32}}$$
 Mayes et al. (1986)

Data from this week was statistical analysed with ANOVA in GenStat 17thh edition.

Estimating HDMI from other variables

- General Linear Model (GLM)
- $\bullet Y_{ij..} = \mu + x_i + x_j + ... + \varepsilon_{ijk}$

Y_{ijkl} = Response variable (HDMI estimations from alkane method)

- μ = Overall mean predicted by model
- $x_i + x_j + ... =$ Animal performance and behaviour data
- ε_{ijkl} = Residual, assumed to come from a Normal distribution with

mean zero and variance σ^2

Stepwise hulling regression analyses for highest adj. R²

Results

Animal performance and behaviour

		Grazing system					
Sensor	Measure	Unit	RG	SG	CG	s.e.d.	sig.
	HDMI	kg DM∙cow⁻¹	14.53	13.24	11.82	1.17	0.076
	Milk urea	mg∙kg⁻¹	18.68ª	11.05 ^b	15.45 ^c	1.12	0.001
Pedometer	Walk/ hour outside	sec∙h⁻¹	2742 ^a	3115 ^b	2912 ^c	73.12	<0.001
	Lying/hour outside	sec∙h⁻¹	906 ^a	538 ^b	719 ^c	73.12	<0.001
Neck sensor	Eating / hour outside	sec∙h⁻¹	1853ª	2200 ^{a,b}	2248 ^b	83.10	<0.001

 a,b,c Means in the same row with different subscript differ significantly for a=0.05

GLM to estimate HDMI

Source	d.f.	S.S.	m.s.	v.r.	F pr.
Regression	6	673.4	112.231	45.61	<.001
Residual	51	125.5	2.461		
Total	57	798.9	14.015		

Percentage variance accounted for 82.4

Standard error of observations is estimated to be 1.57.

Parameter	Unit	Estimate	s.e.	t pr.
Constant µ		-23.72	3.68	<.001
Area per cow	ha∙cow⁻¹	-162.6	21.2	<.001
Mean milk yield	litre	0.4677	0.0438	<.001
DIM	days	0.01433	0.00444	0.002
Milk protein	%	3.79	1.12	0.001
Milk urea	mg/100gr	0.2388	0.0522	<.001
Eating per hour	sec·h ⁻¹	0.003288	0.000741	<.001

HDMI from alkanes vs HDMI estimated with GLM

GLM model to Alkanes

Model check

WAGENINGEN UNIVERSITY

WAGENINGENUR

HDMI

Standardized residuals

Estimating mean HDMI of herd

		Alk met	ane :hod	GLM r		
	n	Mean	CV (%)	Mean	CV (%)	Mean diff.
All						
COWS	58	13.17	28.2	13.17	25.9	0.00
RG	19	14.53	18.9	14.35	16.8	0.18
CG	20	11.82	31.6	11.84	29.1	0.02
SG	19	13.23	30.2	13.40	27.8	0.16

HDMI estimation with GLM over whole season

 $Y = -23.72 - 162.6 \cdot AREA + 0.4677 \cdot Milk Yield + 0.01433 \cdot DIM + 3.79 \cdot Milk protein + 0.2388 \cdot UREA + 0.003288 \cdot Eating time$

Discussion (Treatments)

HDMI similar

• Adapt grazing behaviour to grazing system (Taweel et al., 2004; Pulido and Leaver, 2003)

SG highest walking and lowest lying behaviour

• Small area \rightarrow social interactions

Eating behaviour highest for CG, lowest for RG

- Short grass for CG → more time needed to ingest same HDMI (Pulido and Leaver, 2001,2003; Oudshoorn et al., 2013)
- SG longest grass, not shortest grazing time → previous strip?

WAGENINGEN UNIVERSITY WAGENINGEN UR

Discussion (Model)

- GLM to estimate mean individual HDMI for first time in the Netherlands
 - Animal performance variables (Pulido and Leaver, 2001; Delagarde and O'Donovan, 2005)
 - Model with only behaviour (Chacon et al., 1976; Oudshoorn et al., 2013; Chilibroste et al., 2015)
- Estimating HDMI with model on herd level in Ireland (O'Neill et al., 2013)
 - Similar variables
 - GLM for each season and on herd level
 - $R^2 = 0,59 0,87$

Future research

Critical points of obtained model:

- No weather variables were included
- No sward variables were included

- Seasonal changes

- No supplemental feed could be included
 - Individual supplementation of silage is not done in practice

Conclusions

- HDMI in pasture can be accurately estimated with the obtained model for each grazing system
- Reliable HDMI estimation can potentially be used as management tool

