Urine puddle area determination with use of thermal imaging

Dennis Snoek

MSc Thesis Arjen van Dueren den Hollander & BSc thesis Roel Vernooij, both part of PhD researchSupervisors:Dennis Snoek MSc. (Farm Technology Group)Dr. ir. J.W. Hofstee (Farm Technology Group)Examiner:Prof. Dr. ir. P.W.G. Groot Koerkamp (Farm Technology Group)

The process

- Urea conversion

 Urea ⇔ NH₃

 Puddle area [m²]
- Puddle depth [m]
- pH [-]
- Temperature [°C]
- Air velocity [m/s]

Introduction

NH₃ emission

- Acidification & Eutrophication of environment
- National Emission Ceilings (NECs) in Europe
- NH₃ model
 - To understand the process
 - To estimate emissions
- Commercial) Dairy cow houses
 - Hardly data available for the model variables
 - Limited measurement methods available

Introduction

Sensitivity analysis current NH₃ modelling (Snoek et al. 2014)

- 1. pH of urine
- 2. Puddle depth

This MSc thesis

"Develop & validate a method to determine the puddle area of fresh dairy cow urine puddles"

A: Original IR-image T_{min}=19.9°C;T_{max}=38.4°C

B: Threshold = 24.0°C = 0.82 m²

C: Threshold = 24.5°C = 0.70 m²

D: Threshold = $25.0^{\circ}C$ = 0.61 m^2

Snoek et al. (2014)

Introduction - desired situation

A validated model which is able to:

- Determine urine puddle area from an IR image with an accuracy of at least 0.1 m²
- Work with varying temperatures
- Deal with the presence of cow legs and cubicles

Research questions

- How can the area of a urine puddle be determined?
- What is the accuracy of the image processing method that is developed?

Materials & Methods

Equipment

- FLIR SC660 thermal infrared camera
- IR-images of 640x480
- RGB-images of 2048x1536
- National instruments LabVIEW
- Moveable statue

IR-area model - T_{background}

$$T_{background} = mean[T_{0,0}, T_{1,0}, T_{1,1}, T_{0,1}]$$

with
$$T_{m,n} - \frac{[T_{0,0} + T_{1,0} + T_{1,1} + T_{0,1}]}{4} < \sigma T_{corners}$$

WAGENINGEN UNIVERSITY WAGENINGEN UR

IR-area model - adaptive threshold

 $threshold_{min} = T_{background} + a \cdot \sigma_{img}$ $threshold_{max} = T_{max}$

Select & count pixels: $threshold_{min} < T_{x,y} < threshold_{max}$

 $threshold_{min} = 285.6 \text{ K} (12.6^{\circ}\text{C})$

Image calibration

- Convert pixel dimensions into real-world dimensions
- Aluminium rectangle of 0.6 x 1.0 m
- Four point calibration in NI Vision assistant

Validation experiment

- 90 Artificial urine puddles of warm water with a blue colour dye
 - Colour images => Ground Truth => $A_{p,GT}$ by 3 persons
 - IR images $= > A_{p,IR}$
- 3 concrete floor types
 - Slatted
 - Grooved
 - Solid

IR-area model - determine a

$$RD = \left| \frac{A_{p,GT} - A_{p,IR}}{A_{p,GT}} \right|$$

- RD = relative difference
- $A_{p,IR}$ for range of *a* from 0.00 to 2.00
- $\bullet A_{p,GT} = A_{p,IR}$
 - Checked with scatter plot
 - y = x = 1

Results

Selection of 'hot' pixels

Erosion to separate particles

Selecting only border objects

Dilation operation

Result

threshold_{min}: 282 K (9°C)

 $Area = 0.78 m^2$

Discussion

Few large artificial puddles

(unwanted) Heat sources in practise:

- Cow legs
- Faeces
- Cow body radiation
- Bedding material
- removal method works => not validated (yet)

Conclusions

• How can the area of a urine puddle be determined?

- Adaptive thresholding
- $T_{background} + 0.76 \cdot \sigma_{img} < T_{x,y} < T_{max}$
- What is the accuracy of the image processing method that is developed?
 - 1 pixel = $6.5 \cdot 10^{-6} \text{ m}^2$
 - Accuracy $\leq 0.1 \text{ m}^2$

Recommendations

Image calibration

- Extra calibration image inside cubicle
- Calibration files for 'not central position' puddle
- Validate cow leg removal method
 OR take images without warm objects (cow legs, faeces)
- Determine optimal background temperature, apply correction for other temperatures

Take home

We can now "see" & measure the area of fresh dairy cow urine puddles

Histogram of image TZN10

Histogram of image EB11

