

Erik Pekkeriet

Erik.pekkeriet@wur.nl

08/03/2016

Nederlandse Vereniging Techniek in de Landbouw

"This project has received funding from the European Union"

KBBE.2012.2.3-03:

Call: "Automation in food packaging systems"

- Food industry is facing:
 - high numbers of food products and varieties and packaging types
 - small batches and small runs
 - need for operational flexibility

KBBE.2012.2.3-03:

Automation in food packaging systems

- Fresh and processed food
- Convenience and hygiene is important
- Integration of advanced technologies within robotics
- In-line quality control
- Intelligent management, ensuring traceability

Flexible robotic systems for automated adaptive packaging of fresh and processed food products

Partners & budget

Wageningen UR (NL)

Danish Technological Institite (DK)

Tecnalia (ES)

KU Leuven (B)

University of Manchester (UK)

Fraunhofer AVV (D)

Lacquey (NL)

ITENE (ES)

InnospeXion (DK)

Marel (IS)

Tecnalia-AZTI (ES)

Cam-Tech (DK)

XaarJet AB (S)

Marks & Spencer (UK)

Budget € 12M

Funding € 9M

Duration: 4 years (Kick off: November 2012)

Packaging concept

First results

Robotic Bin Picking of Chicken Breasts Project "PicknPack"

For more info, contact: Gert.Kootstra@wur.nl

D4.4. Quality parameters

Combination of sensor information to estimate quality

- 1. @ Object level: *Quality properties*
- 2. @ pixel level: *Virtual images*

	Property	Measurement device
Vine tomatoes		
1	Maturation stage	Hyperspectral + RGB
2	External defects	Hyperspectral + RGB
3	Internal damages	X-ray
4	Colour	Hyperspectral + RGB
5	size	RGB + 3D
6	Shape	3D
Table grapes		
1	External defects	RGB + hyperspectral + 3D
2	Internal damages	X-ray
3	Colour	Hyperspectral + RGB
4	size	RGB + 3D
5	Shape	3D
Ready meals		
1	Colour	Hyperspectral + RGB
2	Topping	Hyperspectral + RGB
3	Size	RGB + 3D
4	Composition	Microwave

QAS submodule - Hardware

Completion of QAS submodule hardware (June 15)

height: 2m15, width: 1m40

D4.5. QAS submodule - Hardware

Mounting spaces for sensor PC's

D4.5. Sensor Integration @KUL

First phase: development on conveyor systemSecond phase: development on sectional frame

D4.5. Sensor Integration @KUL

- Basic tests with motors pulling web of packages
 - Only at Linear speed
- Functional test on QAS module (5 cm/s) (RGB + hyperspectral)
 - Tomatoes
 - Ready meals (mixed/pure)

Sensor Integration @KUL

Solution for glossy spots: use of polarizers

Standard illumination

Use of polarizers

Submodule integration in Line

Using the QAS module

Direct decorative printing

Laser seal and cut

Movie from University of Lincoln: Laser seal and cut

PicknPack WP6

- Printing of top foil in line
- Sealing, check of seal and cutting

Packaging concept

EXPRESS RELIEF 250mg Take the pain out of your digital printing with the Process Metallic Color System[™] by Color-Logic.

Data connection variability

Communication structure \neq mechanical interconnections!

Planning

- Year 1: Design ready
- Year 2: Modules ready (building)
- Year 3: Integartion of modules and building up flexibility
- Year 4: Demonstration
- In parrallel:
 - improvements of innovations and achieving flexibility.

Thank you

Erik.pekkeriet@wur.nl www.picknpack.eu

© PicknPack project

