Goal of the project The model Optimization Results Optimization of equipment

Optimal management of energy resources in greenhouse crop production systems

NVTL studiedag 2015

10 March 2015, Peter van Beveren^{*a,b*}

a) Farm Technology Group, b) Wageningen UR Greenhouse Horticulture

Background

- Greenhouse horticulture is a large consumer of fossil energy.
- Growers have to reduce energy consumption and CO₂ emission
- Growers have installed a wide range of auxiliary equipment to produce, consume and store energy.
 - Increased complexity and interconnectivity of the various resources.
 - Complex management task.

Optimal management of energy resources

Goal:

Utilize all equipment in a modern greenhouse in the most efficient manner.

Figure : 4 ha commercial rose greenhouse

Dual-stage approach

- Stage 1: Create a desired climate in the greenhouse with minimal energy input.
- Stage 2: Generate this energy as efficient as possible with the available equipment.

Dual-stage approach

- Stage 1: Create a desired climate in the greenhouse with minimal energy input.
- Stage 2: Generate this energy as efficient as possible with the available equipment.

Why?

- OCAP CO₂ is used
- Buffer capacity available
- Practical reasons

WAGENINGEN UNIVERSITY WAGENINGEN UR

Stage 1: Create a desired climate using minimal energy

What is the desired climate?

- Grower knows best about the cropIdeal climate depends on
 - weather predictions
 - status of the crop
 - specific crop knowledge
 - production prognosis
 - product price prognosis
 - experience of the grower

• ...

The desired climate

1. Let the grower define bounds to specify the desired climate

- Upper and lower bounds for temperature
- Upper bound for humidity
- Upper and lower bounds for CO₂
- Maximum amount of CO₂ available per day

Advantages

- No crop production models needed
- No predictions of market prices needed

2. Minimize total energy input by using optimal control techniques

• Model of greenhouse climate is needed.

The dynamic model (1)

Energy balance

The dynamic model (2)

Humidity balance

$$\frac{d\chi_{air}}{dt} = \frac{1}{h} \left(\phi_{trans} - \phi_{cov} - \phi_{he} - \phi_{vent} \right) \quad (\mathbf{g} \, \mathbf{m}^{-3} \, \mathbf{s}^{-1}) \tag{2}$$

CO_2 balance

$$\frac{dCO_{2_air}}{dt} = \frac{1}{h} \left(\phi_{c,inj} - \phi_{c,ass} - \phi_{c,vent} \right) \quad (g \, m^{-3} \, s^{-1}) \tag{3}$$

- See Van Beveren et al. (2015) for more details.
- The model is based on the work of Van Henten (1994), De Zwart (1996), Van Ooteghem (2007), and Vanthoor (2011).

External inputs of the model

Outdoor conditions

- Temperature (°C)
- Relative Humidity (%)
- Radiation (W m⁻²)
- Wind speed $(m s^{-1})$
- CO₂ concentration (ppm)

Control inputs from the climate computer

- Screen closure (%)
- Artificial lighting (%)

Optimization procedure

- Optimal control formulation
- PROPT Matlab Optimal Control Software (Tomlab)

Optimal control problem (1)

Control variables:

1. Heating

•
$$Q_{E,heat} = Q_{he,heat} + Q_{pipe}$$
 in (W m⁻²)

2. Active cooling

•
$$Q_{E,cool} = Q_{he,cool}$$
 in (W m⁻²)

- 3. Ventilation
 - $g_V = \text{specific ventilation } (\text{m s}^{-1})$
- 4. CO_2 injection
 - $\phi_{c,inj} = CO_2$ injection flux $(g m^{-2} s^{-1})$.

Find control variables such that Eq. 4 is minimal.

$$\min_{Q_{E,heat}, Q_{E,cool}, g_V, \phi_{c,inj}} J = \int_{t_0}^{t_f} \left(Q_{E,heat}^2 + Q_{E,cool}^2 \right) dt$$
(4)

Optimal control problem (2) - Constraints

Climate variables

Lower and upper temperature bound:

$$T_{air}^{min}(t) \le T_{air}(t) \le T_{air}^{max}(t)$$
(5)

Upper bound for relative humidity:

$$RH_{air}(t) \le RH_{air}^{max}(t) \tag{6}$$

Lower and upper CO₂ bound:

$$CO_{2,air}^{min}(t) \le CO_{2,air}(t) \le CO_{2,air}^{max}(t)$$
(7)

Optimal control problem (2) - Constraints

Climate variables

Lower and upper temperature bound:

$$T_{air}^{min}(t) \le T_{air}(t) \le T_{air}^{max}(t)$$
(5)

Upper bound for relative humidity:

$$RH_{air}(t) \le RH_{air}^{max}(t) \tag{6}$$

Lower and upper CO₂ bound:

$$CO_{2,air}^{min}(t) \le CO_{2,air}(t) \le CO_{2,air}^{max}(t)$$
(7)

These are all set by the grower.

Optimal control problem (3) - Constraints

Control variables

Heating capacity is limited by:

$$Q_{E,heat}^{min}(t) \le Q_{E,heat}(t) \le Q_{E,heat}^{max}(t)$$
(8)

Cooling capacity is limited by:

$$Q_{E,cool}^{min}(t) \le Q_{E,cool}(t) \le Q_{E,cool}^{max}(t)$$
(9)

Ventilation capacity is limited by:

$$g_V^{min}(t) \le g_V(t) \le g_V^{max}(t) \tag{10}$$

CO₂ injection is limited by:

$$0 \le \phi_{c,inj}(t) \le \phi_{c,inj}^{max}(t) \tag{11}$$

Total amount of CO₂ available per day is limited by:

WAGENINGEN UNIVERSITY WAGENINGEN UR

$$\int_{t_0}^{t_f} \Phi_{c,inj} dt \le \phi_{c,inj}^{max,day}$$
(12)

Optimal control problem (4) - Constraints

Dynamic greenhouse climate model

Dynamic greenhouse climate model:

$$(\dot{T}_{air}, \dot{\chi}_{air}, \dot{C}O_{2,air}) = f(T_{air}, \chi_{air}, CO_{2,air}, Q_E, g_V, \phi_{c,inj}, t)$$
 (13)

Initial conditions:

$$T_{air}(t_0) = T_{air}(0), \chi_{air}(t_0) = \chi_{air}(0), CO_{2,air}(t_0) = CO_{2,air}(0)$$
(14)

Implementation of minimum pipe temperature

Change lower bound for heating capacity

Minimum pipe temperature

Replace the old constraint

$$Q_{E,heat}^{min}(t) \le Q_{E,heat}(t) \le Q_{E,heat}^{max}(t) \quad (W \, \mathrm{m}^{-2})$$
(15)

with the new constraint with minimum pipe temperature T_{pipe}^{min} :

$$Q_{E,heat}^{min}(t) = \alpha_{pipe}(T_{pipe}^{min} - T_{air})(t) \quad (W \, m^{-2})$$
 (16)

Similar approach for implementation of *minimum ventilation* is possible.

Standard optimization settings

Table : Standard settings of the bounds for optimization

Symbol	Description	Value	Unit
$T_{air}^{min}(t)$	Lower temperature bound	$\overline{T}'_{air,meas}(t) - 0.5^{\circ}\mathrm{C}$	°C
$T_{air}^{max}(t)$	Upper temperature bound	$\overline{T}'_{air,meas}(t) + 0.5^{\circ}\mathrm{C}$	$^{\circ}\mathrm{C}$
$RH_{air}^{max}(t)$	Upper RH bound	$\max RH_{air,meas}(t)$	%
$CO_{2,air}^{min}(t)$	Lower O_2 bound	$0.97 \cdot \overline{CO}'_{2,air,meas}(t)$	$\mathrm{g}\mathrm{m}^{-3}$
$CO_{2,air}^{max}(t)$	Upper CO_2 bound	2000 ppm	${ m g}{ m m}^{-3}$
$Q_{E,heat}^{max}(t)$	Maximal heating capacity	200	${ m W}{ m m}^{-2}$
$Q_{E,cool}^{min}(t)$	Maximal cooling capacity	200	$\mathrm{W}\mathrm{m}^{-2}$
$\phi_{c,inj}^{max}(t)$	Maximal CO ₂ injection capacity	1200	$\mathrm{kg}\mathrm{h}^{-1}$
$\Phi_{c,inj}^{max,day}$	Total amount of CO_2 available per day	$\int \phi_{c,inj,meas} dt$	$\mathrm{g}\mathrm{m}^{-3}\mathrm{d}^{-1}$

Table : Standard settings for optimization. ' = smoothed.

Goal of the project The model Optimization Results Optimization of equipment

Optimization results

Optimization result 1 day

operation (——) are also shown.

One year optimization with standard settings

Figure : Results of daily optimization with standard settings for the year 2012. Optimal heating (____), optimal cooling (____), heating grower (____), cooling grower (____), and mean outside temperature (____).

One year optimization with standard settings

Figure : Optimal ventilation (—–) and ventilation grower (—–) ${\it Q}_{vent}$ (MJ m $^{-2}$ d $^{-1})$ for 2012.

One year optimization with standard settings

Table : Total heating, cooling, and CO_2 injection of the grower, the optimal situation with standard settings (ss), and the optimal situation with minimum pipe temperature (mp) as used by the grower for 2012.

	Grower	Optimal ss	Optimal mp	Unit
Heating	2.08	1.10	1.49	$\mathrm{GJ}\mathrm{m}^{-2}\mathrm{y}^{-1}$
Cooling	0.71	0.60	0.71	${ m GJ}{ m m}^{-2}{ m y}^{-1}$
CO_2 injection	95.4	85.7	85.9	$\mathrm{kg}\mathrm{m}^{-2}\mathrm{y}^{-1}$

Stage 2: Optimization of equipment

Stage 2: Optimization of equipment

Thanks for your attention

peter.vanbeveren@wur.nl

References

- Van Beveren, P.J.M., Bontsema, J., Van Straten, G., and Van Henten, E.J. (2013). Minimal Heating and Cooling in a Modern Rose Greenhouse. In 4th IFAC Conference on Modelling and Control in Agriculture (pp. 282-287).
- Van Beveren, P.J.M., Bontsema, J., Van Straten, G., and Van Henten, E. J. (2015). Minimal heating and cooling in a modern rose greenhouse. Applied Energy, 137, 97-109. doi:10.1016/j.apenergy.2014.09.083
- Van Henten, E.J. (1994). Greenhouse climate management: an optimal control approach. Landbouwuniversiteit Wageningen, Wageningen, The Netherlands.
- Van Ooteghem, R.J.C. (2007). Optimal control design for a solar greenhouse. Wageningen University, Wageningen, The Netherlands.
- Vanthoor, B.H.E. (2011). A model-based greenhouse design method. Wageningen University, Wageningen, The Netherlands.
- De Zwart, H.F. (1996). Analyzing energy-saving options in greenhouse cultivation using a simulation model. Landbouwuniversiteit Wageningen, Wageningen, The Netherlands.

